Advanced Geotechnical Design

Code	Credit Hours
CE-828	3-0

Course Description

This course is designed to allow the students to practice the shallow and deep foundation under various cases.

Course Objectives

- 1. To equip the students with the design of shallow and deep foundations.
- 2. Student should be able to understand the design methodology and limiting conditions.

References / Textbooks

- 3. Bowles J E, (1992). Foundation Analysis & Design. 5th ed. McGraw Hill, New York.
- 4. Das, B. (20XX). Principles of Foundation Engineering. Xth ed. Cengage Learning. UK
- 5. Fang, H. Y. (2013). Foundation engineering handbook. Springer Science & Business Media.
- 6. Coduto, D. (2001). Foundation design: principles and practices. 2nd ed. Upper Saddle River: Prentice Hall

Prerequisites

Nil

Assessment System for Theory

Quizzes	10-15%
Assignments	5-10%
Mid Terms	25-30%
Project	0-10%
ESE	45-50%

Teaching Plan

Week	Topics	Learning Outcomes
No		
1	Introduction	Course Outline, objectives, teaching plan,
		assessment method, concepts review
2-3	Bearing Capacity of Foundation	Ultimate Soil-Bearing Capacity for Shallow
		Foundations. Terzaghi's Bearing Capacity
		Theory. General Bearing Capacity Equation
4-7	Special cases of shallow foundations	One-eccentricity, two-eccentricity and inclined
		loads Special cases of shallow foundations.
		Foundation Supported by a Soil with a Rigid
		Base at Shallow Depth. Stronger Soil Underlain
		by Weaker Soil. Weaker Soil Underlain by
		Stronger Soil. Closely Spaced Foundations
		Effect on Ultimate Bearing Capacity.
		Foundations on Top of Slope. Foundations on
		the Slope. Seismic Bearing Capacity and

		Settlement in Granular Soil. Foundations on	
		Rock. Uplift Capacity of Foundations - In	
		Granular / Cohesive soils	
8	Foundation Settlement	Total settlement. Elastic settlement.	
		Consolidation settlement. Primary	
		Consolidation. Calculation of Settlement under	
		foundation. Time Rate of Consolidation.	
		Tolerable Settlement of Buildings. Differential	
		Settlement	
9	MID TERM		
10-11	Selection the foundation	Factors to Consider in Foundation Design.	
		Spreading Footing Design. Mat Foundation.	
12-17	Deep foundation	Deep foundation; types, selection criteria,	
		installation criteria. Single Pile Capacity-Point	
		bearing capacity: Meyerhof (1976), Coyle and	
		Castello (1981), Berezantsev (1961)	
		/Tomlinson (1986), Vesic (1977), Janbu (1976).	
		Single Pile Capacity- Frictional resistance:	
		Frictional capacity coefficient (λ Method),	
		Coyle and Castello (1981), Adhesion factor (α	
		Method), The Effective Stress Method (β	
		Method), Meyerhof's method (1976). Pile load	
		test: Static load, Cyclic load, Dynamic load.	
		Prediction bearing capacity using correlations	
		(e.g. SPT). Pile Foundation Groups. Drilled	
		Piers or Caissons	
18	End S	emester Exams	